Energy Efficiency Through Green Building Concepts

ITC Green Centre, Gurgaon Platinum Rating

CII – Godrej GBC, Hyderabad Platinum Rating

Spectral Services, Noida Platinum Rating

Wipro Tech., Gurgaon
Platinum Rating

Grundfos Pumps, Chennai Gold Rating

Indian Green Building Council (IGBC)

Vision of IGBC

- > To usher in a green building revolution in India
- To become one of the world leaders in green buildings by
 2010

The Green Building Movement - Over the Years

No	Criteria	2001	Till Date
1	CEOs & senior people involved	50	≈ 2000
2	No. of professionals trained on LEED rating	10	≈ 3000
3	No. of registered LEED Green Buildings	1	140
4	Built - in Area (sq.ft)	0	67 Million
5	Green Building products & equipments	5	50
6	IGBC Membership	0	141

Green Building vs. Conventional Building

Externally : both look alike

❖ Building Use: both are same

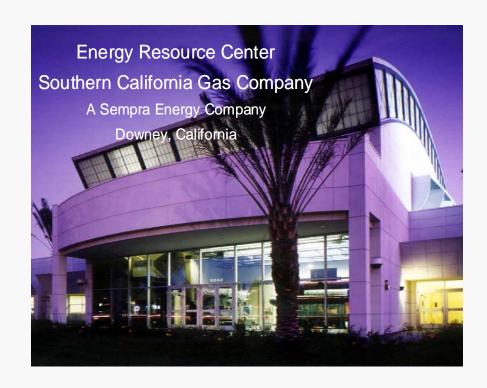
Differences

Concern for human comfort & indoor environment

Operational savings

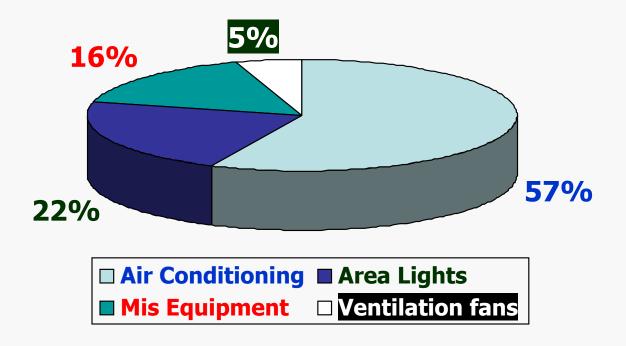
Tangible Benefits

- Reduce operating costs
- Optimize life cycleeconomic performance
 - Sustained savings


LEED 2.0 Certified Gold Ebensburg, PA

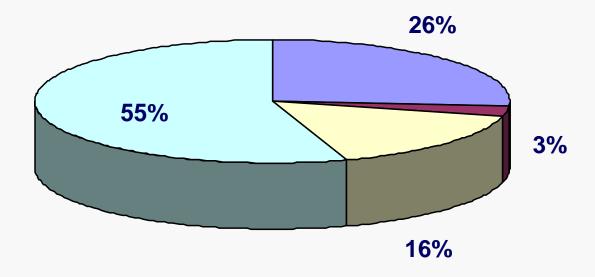
- **❖** Energy savings: 40 − 50 %
- **❖** Water savings: 20 − 30 %
- Reduction in initial investment

Intangible Benefits of Green Design


- Environmental benefits
 - Reduce impact on the environment
- Health and Safety benefits
 - > Enhance occupant comfort
- Improve Productivity of occupants

World Class Standards & Procedures

Building Energy Consumption



Break-up of energy consumption in a building

Cooling Load Components

A Break Up Of The Heat Gain Through Various Building Components

- WALL CONDUCTION
- GLAZING CONDUCTION
- INTERNAL GAINS (LIGHT, PEOPLE, COMPUTERS)
- ROOF CONDUCTION

Approach

1. Orientation

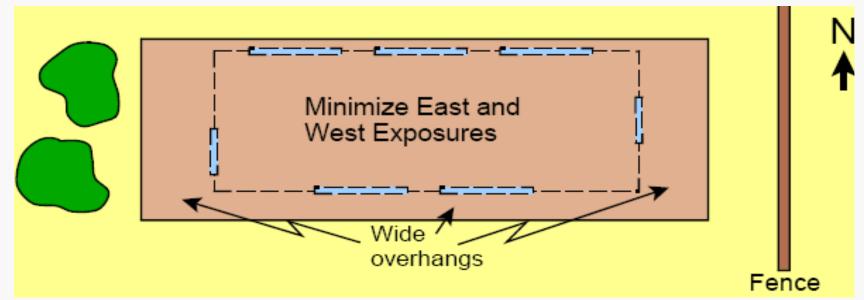
2. Envelope measures

Wall, Glazing, Fenestration, Shading, Skylighting, Roof

3. Equipment & systems

Chiller, VFD, Lighting

4. Controls


BMS, Temperature, Humidity

5. Commissioning

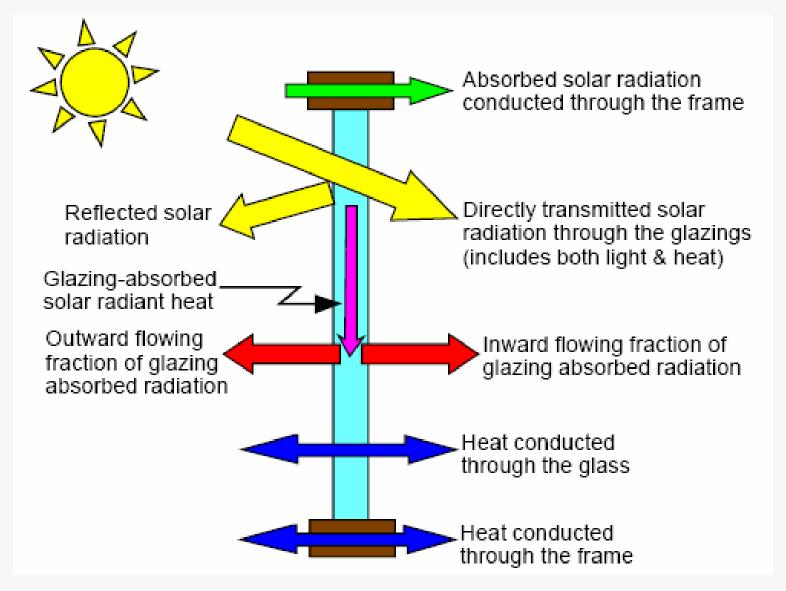
Additional commissioning ,M & V

1) Orientation



- What is the ideal orientation?
- East-West ?
- ❖ North-South?
- ❖ Does not matter?
- Buffer East and West Exposures with garages, utility rooms etc.

CII


2) Envelop Measures

- ❖ Glass & glazing
 - How much glazing?
- High glazing
 - > Tremendous daylighting
 - Heat ingress
 - □ Need to balance
- High performance glass & glazing
 - > Low U-value
 - > Low Shading Coefficient
 - High VLT (Visual Light Transmittance)

Heat Flows Through Windows

U-value

- ❖ U value (w/m2.C)
- Heat transfer due to temperature difference (conduction)
- Typical U values
 - > Single glazed glass (6mm): 5-6
 - ➤ High Performance glass: 1.7 3.0

(6mm+airgap+6mm)

Shading coefficient

Shading coefficient

```
Heat gain thru' a given glazing (SHGC)
```

Heat gain thru' 3 mm clear glass (0.87)

Solar heat gain coefficient (SHGC)

- > Also called as Solar factor by manufacturers
- > Indicates direct heat gain

* Typical values

➤ Single glazed 6mm glass : 0.5 - 0.8 W/m² deg K

➤ High performance glass : 0.1 – 0.4

Significance of Glazing Properties

Which one is more important?

❖U-value?

Shading coefficient?

❖ Both ?

Relative heat gain

❖ RHG= Direct heat gain+Conductive heat gain

$$= SC (630) + U (35-24)$$

❖ Direct heat gain : 90 %

❖ Conductive heat gain : 10 %

Walls & Roofs

RCC Walls

- U-value: 1.95 W/m2 deg K
- Heat Storage higher

Due to high mass

Concrete Roof

- U value 2.5 3.0 W/m2 deg K
- Efficient roof in a flat building
- Efficient wall in multi-storeyed building

Wall options

- Brick wall with insulation
 - > Extruded polystyrene, Expanded polystyrene (thermocol), Glass wool etc.,
- Brick wall with air cavity
- Hollow blocks
- Flyash bricks
- Autoclaved Aerated Concrete Blocks

Saving potential 3-8 %

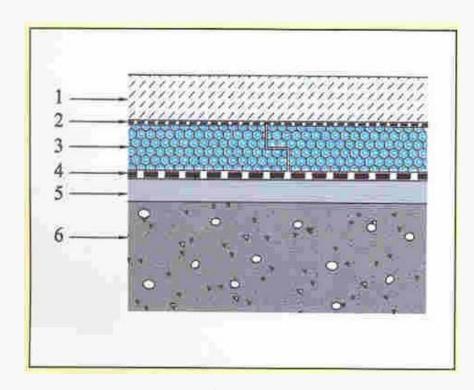
Insulation Materials-Relative U-values

Glass wool stuffed

U value :0.25 W/m2 deg C(150 mm thick)

Thermocol

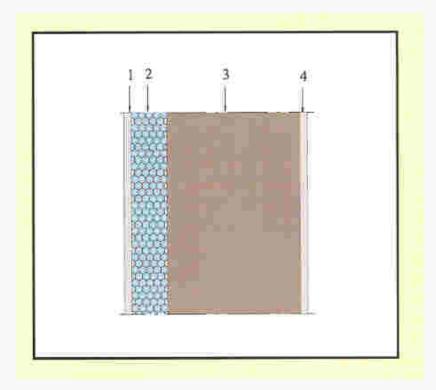
> U-Value : 0.3 W/m2 (100 mm)


Extruded Polysterene

> U-Value : 0.028 W/m2 (60 mm)

Roof Insulation

- Over-deck ?
- Under-deck?
- Insulationsandwiched
- Saving potential
 - > 3-8 % depending on extent of roof


- 1: Reinforced concrete
- 2: Separation layer
- 3: Insulation
- 4: Water proof membrane
- 5: Screed
- 6: Concrete roof deck

Wall Insulation

- External or Internal
- Internal if brickexterior required
- Saving potential

> 3 - 8 %

- 1: Cement plaster / Gypsum wall board
- 2: Insulation
- 3: Brick or concrete wall
- 4: Interior gypsum or plaster

Autoclaved Aerated Concrete Blocks

* AAC blocks

Composed of fly ash, cement, lime, Aluminum powder and water

Unique properties

- > Low U value: 0.67 W/m² ok
- Reduction in temp possible: 4-5°C

Economic Benefits

- > 15-20% savings in A/c
 Load
- > Savings in Cement

Envelope measures : Typical saving potential

❖ Orientation : 0.5-1 %

❖ AAC wall : 3-8 %

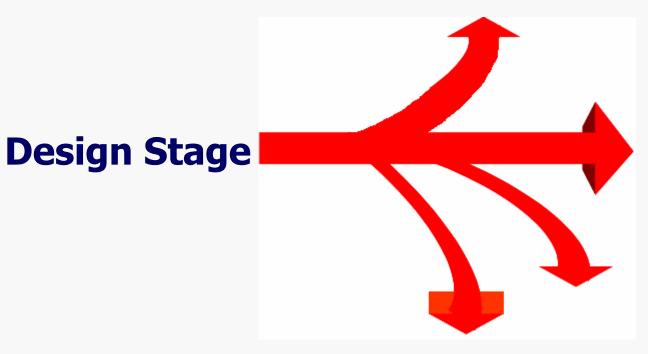
❖ Brick wall with 75mm : 3-8 %

extruded polysterene insulation

❖ High Albedo roofing material : 2-3 %

❖ Roof garden : 1-2 %

❖ Low-U glass & glazing : 6-8 %


❖ Thermal break : 1-2 %

❖ Roof insulation (extr.polyst) : 5-6 %

Green Building – Air Conditioning

Conventional System

Wind Tower System

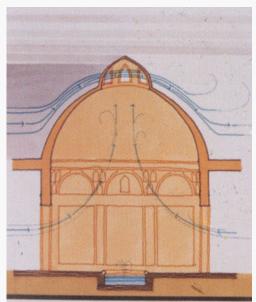
Geothermal Cooling

Earth Tunnel Cooling

ASHRAE COP requirements

Equipment Type	Size Category	Minimum Efficiency	Efficiency as on 10/29/2001*	
Air Cooled, with	< 150 tons	2.70 COP 2.80 IPLV	2.80 COP 2.80 IPLV	
condenser electrically Operated	≥150 tons	2.50 COP 2.50 IPLV		
Air cooled without condenser, electrically Operated	All capacities	3.10 COP 3.20 IPLV	3.10 COP 3.10 IPLV	
Water cooled, electrically operated, positive displacement (reciprocating)	All capacities	3.80 COP 3.90 IPLV	4.20 COP 4.65 IPLV	

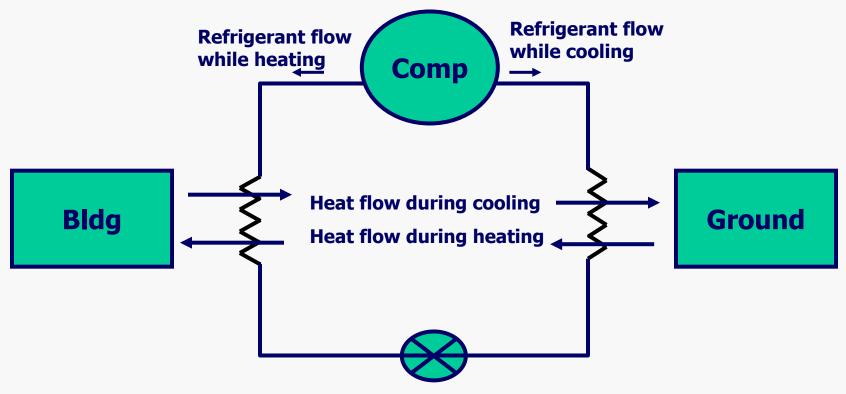
ASHRAE COP requirements


Water cooled electrically	<150 tons	3.80 COP 3.90 IPLV	4.45 COP 4.50 IPLV
Water cooled, electrically operated, positive displacement (rotary screw and scroll)	≥150 tons an <300 tons	4.20 COP 4.50 IPLV	4.90 COP 4.95IPLV
Screw and scroll)	≥300 tons	5.20 COP 5.30 IPLV	5.50 COP 5.60 IPLV
	<150 tons	3.80 COP 3.90 IPLV	5.00 COP 5.00 IPLV
Water cooled, electrically operated, centrifugal	≥150 tons and <300 tons	4.20 COP 4.50 IPLV	5.55 COP 5.55 IPLV
	≥300 tons	5.20 COP 5.30 IPLV	6.10 COP 6.10 IPLV
Air-cooled absorption single effect	All capacities	0.48 COP	0.60 COP
Water-cooled absorption single effect	All capacities	0.60 COP	0.70 COP
Absorption double effect, indirect-fired	All capacities	0.95 COP 1.00 IPLV	1.00 COP 1.05 IPLV
Absorption double effect, direct-fired	All capacities	0.95 COP 1.00 IPLV	1.00 COP 1.00 IPLV

Wind Towers

Advantages

- Requires little / no energy
- Indoor air quality good
 - > Fresh air entry
- Disadvantage
 - Performance dependent on wind availability



CII- Institute of Quality Building, Bangalore

Geo Thermal System

- **❖** Refrigerant : Environmentally safe Anti-freeze liquid (Water + Propylene Glycol)
- ❖ Polyethylene pipe (HDPE) pipes underground, Life 50 years
- Length of pipes depends on area conditioned

Saving potential: 30 – 50 %

IGP Office, Gulbarga

AREA IN SQ.FT LEED RATING AWARDED RATING SYSTEM

GREEN FEATURES

- 30,000
- GOLD RATED
- LEED FOR NEW CONSTRUCTION
- EVAPORATIVE COOLING TECHNIQUE
- USE OF SOLAR ENERGY
- RAT TRAP TYPE OF BRICK MASONRY
- TERRACE GARDEN & HIGH ALBEDO PAINT, etc

HYDERABAD INSTITUTE OF TECHNOLOGY & MANAGEMENT

AREA IN SQ.FT LEED RATING AWARDED RATING SYSTEM

GREEN FEATURES

- 78,000
- SILVER RATED
- LEED FOR NEW CONSTRUCTION
- 85% OF AREAS ARE DAYLIT
- FLY ASH BRICK CONSTRUCTION
- PASSIVE DOWNDRAFT EVAPORATIVE COOLING SYSTEM
- EXTENSIVE USE OF REUSED FURNITURE

Benefits Experienced in LEED Rated Buildings

- **❖ 3 LEED Platinum Buildings monitored to validate tangible benefits**
- ***** Benefits far exceeding the initial estimates

Building	Sq.ft	Normal Building (kWh)	Actual Building (kWh)	% Reduction	Annual Energy Savings (Rs in Lakhs)
Wipro	1,75,000	48,00,000	31,00,000	40%	102
ITC	1,70,000	35,00,000	20,00,000	45%	90
CII Godrej GBC	20,000	3,50,000	1,30,000	63%	9

Energy consumption depends on

 Local climate, Density of occupancy, Occupancy schedule, Orientation of the building, Internal loads

Wipro – Benefits Experienced

- Wipro building in Gurgaon
 - LEED Platinum rated
 - **□Daytime building (12 hours/day)**
 - **□Composite weather**
 - **Extremes of summer & winter**
 - □Area: 1,80,000 sft
- Specific Energy consumption
 - Comparison between May-Sep 06 and May-Sep 07
 - Non-LEED building
 - **□506** kWh/person/month
 - LEED rated building
 - **□329** kWh/person/month
 - Annual savings: Rs. 100 Lakhs

Co2 Emissions Reduction Potential

* 140 registered LEED buildings

- > 67 million sq.ft
- Reduction of 800,000 tonnes of CO2emission per year

* Technopolis

- > 600,000 sq.ft
- > Benefits anticipated: Rs.75 L /year

Technopolis, Kolkatta

Data Centres

- Excellent opportunity for implementing green building concepts
- Building consumption as % of overall consumption can be reduced substantially

Olympia Tech Park

Where Do We Go From Here?

 Aspiring India to be one of the world leaders in green buildings by 2010

❖ Goals

- > 1 Billion sq.ft of green building footprint by 2015
- > 1000 Green Buildings registeration by 2010
- Facilitate tapping Green Building materials
 market of Rs.15000 Cr by 2010
- > 5000 IGBC Accredited Professionals by 2010
- Pilot & launch of other LEED products
 - ☐ IGBC Homes & Residential,
 - □ LEED EB, LEED India ND, LEED India Schools, etc

